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The principal aim of ganmma-ray astronomy is the study of the

origin, distributions and interactions of energetic particles in the

cosmos. While energetic electrons reveal their existence by radiating

a variety of electromagnetic emissions, energetic nuclei radiate almost

exclusively in the gamma-ray region.

Solar flares accelerate both electrons and nuclei. But until the

advent of solar gamma-ray astronomy, observations in the radio and x-ray

bands revealed the existence of only the electronic component in the

flare region itself.

Solar gamma-ray astronomy was established as an observational

science in 1972. The first gamma-ray lines from solar flares were

observed in that year, when an instrument designed at the University

of New Hampshire and flown in the wheel of the seventh orbiting solar

observatory (OSO-7) detected gamma rays from the large (3B) flares

of August 4 and 7, 1972. Hard photons from these flares ranged in

energy up to almost 107eV, and consisted of both emission lines and

continuum. Detailed theoretical work, carried out both before and after

the observations supports the conclusion that the observed lines at

0.51, 2.2, 4.4 and 6.2 MeV are due to positron annihilation, neutron

capture on hydrogen, and deexcitation of nuclear levels in carbon,

nitrogen, and oxygen, and that the continuum is most likely bremsstrahlung

4raking radiation)of relativistic electrons. We discuss now how these

gamma rays are formed, what their properties are, and how they con-

tribute to the understanding of the physics of flares.

The basic mechanism for the production of gamma rays in solar

flares are interactions between accelerated charged particles and the



ambient solar atmosphere. These interactions excite nuclear levels

which decay by emitting high-energy photons, they generate neutrons,

they produce T mesons and radioactive nuclei which emit gamma rays

and positrons, and they produce bremsstrahlung which extends into the

gamma-ray region provided that the accelerated particles have sufficiently

high energies.

Gamma-ray lines from excited nuclei such as the line at 4.4 MeV

from 12C may be considered as prompt emissions because the excited

levels decay in time intervals which are much shorter than any of the

characteristic times of the flare. They serve, therefore, as excellent

tracers of the time dependence of the nuclear reaction rates. These

rates are directly proportional to the instantaneous numbers of accel-

erated particles in the interaction region, which, in turn, are

determined by the acceleration mechanism and the logses suffered by

the particles. The very important question of whether protons and

electrons are accelerated by the same mechanism can be best studied by

observing simultaneously gamma-ray lines and continuum. The presently

available observations, however, are not sufficiently accurate to

provide clear-cut answers and hence more measurements are needed.

The production of the lines at 2.2 MeV and 0.5 MeV lines involves

the more complex processes of neutron capture and positron annihilation.

Neutrons in solar flares result mainly from the dissintegration

of 4He nuclei in proton-alpha particle interactions. These interactions

take place in the chromosphere or lower corona and they produce neutrons

with energies from about 106eV to 108 eV. Because the neutrons do not
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interact with magnetic fields, an initially upward moving neutron escapes

from the Sun. Some of these escaping neutrons, especially those with

high energies, may be detected near Earth. An experiment to detect

solar neutrons in the interplanetary medium, however, has not yet been

successfully carried out. A fraction of the downward moving neutrons

can also escape after being backscattered elastically by ambient protons,

but most of these neutrons either are captured or decay at the Sun.

But because the probability for elastic scattering is much larger than

the capture probability, the majority of the neutrons are thermalized

before they get captured. This thermalization erases the effects that

possible directional anisotropies of the charged particles may have on

the 2.2 MeV line. It also leads to the conclusion that this line has

an extremely narrow width of only about 100eV. The energy of the 2.2

MeV line has been measured in the laboratory and is 2223.351 + 0.046 keV.

Neutrons in the photosphere are captured by protons or 3He nuclei,

or they decay. Only capture by protons, however, produces gamma rays,

3
since capture by He results in tritium without emitting photons. The

latter process has, nevertheless, considerable astrophysical importance

because it can place an upper limit on the photospheric 3He abundance.

This is achieved in the following manner: The detection of line emission

at 2.2 MeV implies that not all the neutrons were absorbed by 3He and

hence the photospheric 3He abundance cannot be arbitrarily large.

When reasonable values are used for the other parameters of the accel-

erated particles, the upper limit on the photospheric 
3He abundance is

of the same order as the measured abundance in the solar wind. Neutron
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capture is at present the only method for assessing the abundance of
3He in the photosphere. This abundance is of considerable importance

for the problem of solar neutrino emission and the question of element

synthesis in the big bang or primeval fireball that started the

evolution of the universe.

From the comparison of the observed and calculated intensities

of the lines at 4.4 MeV and 2.2 MeV it is possible to obtain information

on the energy spectrum of accelerated nuclei in flares. This follows

from the fact that excited states in nuclei are produced on the average

by protons of lower energies than those which produce neutrons;

hence the ratio of the two lines depends quite strongly on the proton

energy spectrum. This method gives information on protons of energies

from about 107 to 10 8eV. Spectral information at higher energies could

be best obtained by observing the products of high-energy interactions

such as photons from -r0 decay and high energy neutrons that survive

during transit from the Sun to Earth.

From the absolute intensity of gamma-ray lines it is possible

to deduce the total energy deposited by the accelerated nuclei in the

flare region. For the 1972, August 4 flare, the protons which are

responsible for gamma-ray emission produce only a few percent of the

energy generated by the electrons which make the implusive hard x-rays.

Nevertheless, protons could deposit their energy in regions which are

not accessible to electrons because they have a longer stopping range

in the ambient medium than the electrons.

Positrons in solar flares result from the decay of + mesons and

various radioactive nuclei produced by the nuclear reactions. The half



5

lives of these positron emitters range from values less than 1 second

to about 20 minutes and they produce positrons of energies from a

few times 105eV to about 108eV. After their production, the positrons

are decelerated to energies less than 10
3eV where they can annihilate.

This deceleration is achieved by interactions with the ambient solar

atmosphere, and hence the deceleration time depends on the density

and magnetic field of the medium in which the positrons annihilate.

A fraction of the positrons may escape from the flare region and could

be detected in the interplanetary medium as relativistic particles.

(No such measurements have yet been made.) The annihilation process

itself is quite complicated. The positrons can annihilate with free

electrons to produce two 0.51 MeV gamma rays per annihilation, or they

may form a positronium atom. This atom is similar to the hydrogen

atom except that the proton is replaced by a positron. Positronium

atoms also annihilate into gamma rays: annihilation from the singlet

spin state produces two 0.51 MeV photons, and the triplet state annihilates

into three photons of energies less than 0.51 MeV. It appears that

future gamma-ray detectors with good energy resolution may resolve

radiation from positronium annihilation and thereby detect the existence

of this exotic atomic species in solar flares.

As a result of the finite capture time of the neutrons in the

photosphere, and the half lives of the positron emitters and deceleration

times of the positrons, both the 2.2 MeV and 0.51 MeV lines are con-

siderably delayed with respect to the prompt nuclear deexcitation lines.

This result is verified by observational data from the flare of
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August 7, 1972: at a time when all prompt emissions were very small,

the 2.2 MeV and 0.51 MeV lines were still observable.

Thus, both the 2.2 MeV and 0.51 MeV lines from solar flares

present time dependences which reflect not only the histories of the

charged particles but also the physical conditions of the gamma-ray

producing regions. These conditions could be best studied by simul-

taneously observing a prompt gamma-ray line such as the line at 4.4

MeV from 12C and the delayed 2.2 MeV and 0.51 MeV lines. The former

would unambiguously determine the time history of the accelerated

nuclei, while the latter would provide valuable information on the

physics of neutrons and positrons in solar flares, and on the physical

conditions of the gamma-ray producing regions.

The possibility for detecting gamma-ray lines from an astronomical

source depends not only on the strength of the lines but also on their

widths. The narrower the line the easier it can be resolved from

background provided that the detector has good energy resolution.

Line broadening is caused by the Doppler effect which shifts

the energy of a photon emitted by a moving source, upward or down-

ward in energy depending on whether the source moves toward or away

from the observer. There are two kinds of Doppler broadening of gamma-

ray lines from solar flares. Thermal broadening which influences

mainly the positron-annihilation and neutron-capture radiations, and

kinematical broadening which affects the njclear excitation lines.

Because positrons and neutrons thermaLize before they produce

gamma rays, the widths of the 0.51 and 2.2 MeV lines depend on the
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temperature of the particles before annihilation or capture. It turns

out that the width of the 0.51 MeV line is a very sensitive thermo-

meter of the ambient medium in the annihilation region. While the

presently available measurement can only set upper limits (at about

107 degrees kelvin), future measurements may be able to measure temp-

eratures as low as 2 x 104 degrees.

Because the 2.2 MeV line is formed in the photosphere where the

temperature is known, its width can be calculated. It is found that

the 2.2 MeV line has a width of only 100eV, a value much analler than

the width of any other gamma-ray line from solar flares. This result,

coupled with the fact that the 2.2 MeV line is the most intense line

from flares, implies that this line could be observable with high reso-

lution detectors not only from major events such as those in August,

1972, but also from smaller flares.

Kinematical broadening is due to the fact that nuclear gamma rays

are produced by fast particles which not only excite the levels but

also impart kinetic energy to the nuclei. The gamma rays are therefore

emitted by moving sources whose velocities tend to reflect the velocity

distribution of the fast particles.

The kinematical width of the 4.4 MeV nuclear excitation line

from 12C is about 100 keV. The width of the 0.85 MeV line from 56Fe

(not yet detected) is only a few keV, because this nucleus is so

massive that it acquires only a very small velocity when it is excited

by a fast proton. Thus, eventhough iron is much less abundant than

carbon in the solar atmosphere, its lines may be relatively easy to
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observe with a high resolution detector. The large kinematical Doppler

shift of the 4.4 MeV line, however, may be used to detect anisotropies

in the angular distribution of protons in solar flares.

In summary, solar flares may be studied in the gamma-ray region,

and this study can provide essential information on accelerated nuclei

that can be obtained in no other way. A multitude of physical processes,

such as particle acceleration, nuclear reactions, positron and neutron

physics, and kinematical line broadening, come into consideration at

gamma-ray energies. Gamma-ray observations are complementary to hard

x-ray observations since both provide information on accelerated particles.

But it appears that only in the gamma-ray region do these particles

produce distinct spectral lines.

All the presently available observational data on solar gamma

rays has come from only two large flares. It is hoped that more data

will be forthcoming during the next solar maximum.
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